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Signals in Human Striatum Are Appropriate for Policy
Update Rather than Value Prediction

Jian Li1,2 and Nathaniel D. Daw1,2

1Department of Psychology and 2Center for Neural Science, New York University, New York, New York 10003

Influential reinforcement learning theories propose that prediction error signals in the brain’s nigrostriatal system guide learning for
trial-and-error decision-making. However, since different decision variables can be learned from quantitatively similar error signals, a
critical question is: what is the content of decision representations trained by the error signals? We used fMRI to monitor neural activity
in a two-armed bandit counterfactual decision task that provided human subjects with information about forgone and obtained mone-
tary outcomes so as to dissociate teaching signals that update expected values for each action, versus signals that train relative preferences
between actions (a policy). The reward probabilities of both choices varied independently from each other. This specific design allowed
us to test whether subjects’ choice behavior was guided by policy-based methods, which directly map states to advantageous actions, or
value-based methods such as Q-learning, where choice policies are instead generated by learning an intermediate representation (reward
expectancy). Behaviorally, we found human participants’ choices were significantly influenced by obtained as well as forgone rewards
from the previous trial. We also found subjects’ blood oxygen level-dependent responses in striatum were modulated in opposite
directions by the experienced and forgone rewards but not by reward expectancy. This neural pattern, as well as subjects’ choice behavior,
is consistent with a teaching signal for developing habits or relative action preferences, rather than prediction errors for updating
separate action values.

Introduction
According to influential theories, the dopamine system broad-
casts a prediction error signal for reinforcement learning (RL)
(Barto, 1995; Schultz et al., 1997; Dayan and Abbott, 2001;
Rangel et al., 2008). However, relatively little is known about
the precise action of this signal in guiding subsequent deci-
sions, and indeed, error-driven learning can support qualita-
tively different decision-making strategies (Sutton and Barto, 1998;
Dayan and Abbott, 2001). Two approaches differ in the content of
the information learned. Policy-based (direct actor) methods such
as the actor/critic learn a policy or direct mapping from situations
to advantageous actions, adjusting this in light of received re-
wards (Barto, 1995; Sutton and Barto, 1998; Dayan and Abbott,
2001). In contrast, value-based (indirect actor) methods, such as
Q-learning, produce choice policies indirectly by learning an in-
termediate representation: the expected reward (value) for each
candidate action (Watkins and Dayan, 1992). These intermediate
representations can then be compared to derive a policy.

These algorithms formalize important neuropsychological
concepts. Policy learning parallels the notion that reinforcement

“stamps in” stimulus-response habits, which is central to con-
temporary accounts of drug abuse (Thorndike, 1898; Dickinson
and Balleine, 2002; Everitt and Robbins, 2005). However, either
value or policy learning can be accomplished using teaching sig-
nals that, in typical tasks, appear nearly identical. In a typical task,
where subjects repeatedly select from different options for re-
wards, action values can be learned from a prediction error (PE)
measuring the difference between the received reward and the
option’s previously predicted value. A policy can also be updated
by comparing the received reward to an expected (e.g., reference
or state) value prediction (Dayan and Abbott, 2001). Indeed, the
actor/critic algorithm learns both values and policies using the
same error signal (Barto, 1995). Attempts using such tasks to
distinguish versions of these signals have produced inconsistent
results (Morris et al., 2006; Roesch et al., 2007).

We studied human choices and fMRI signals in an RL task
modified to distinguish signals appropriate for updating policies
versus value predictions. Subjects repeatedly chose between two
slot machines, associated with independent probabilities of de-
livering monetary reward. For each choice, the screen displayed
the amount of reward subjects won, but also what they would
have won, had they chosen the other option. This information
should affect teaching signals for values or policies differently,
allowing us to distinguish these computational strategies. If val-
ues for the two options are learned separately, then two predic-
tion errors are needed: comparing each value prediction to its
associated outcome. In contrast, the policy requires only a single
update, depending only on the difference between the obtained
and forgone outcomes (such that rewards need not be compared
with predictions).
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Since both rewards were conditionally independent, it was
unambiguous to determine their separate effects on neural activ-
ity. We focused on activity in the ventral striatum, which has been
shown to correlate with PE signals similar to those seen in dopa-
minergic neuron recordings (Schultz et al., 1997; Berns et al.,
2001; O’Doherty et al., 2003; Lohrenz et al., 2007).

Materials and Methods
Subjects. Twenty subjects participated in the experiment (13 female;
mean age, 21.2 � 5.0 years; age range, 18 –39 years). The study was
approved by the University Committee on Activities Involving Human
Subjects and all subjects provided informed consent before the
experiment.

Counterfactual learning task. The task consisted of four sessions of 60
trials each, separated by short breaks. At the start of each trial, subjects
were presented with pictures of two differently colored (green and pur-
ple) slot machines. Subjects could select their choice of the slot machines
using two button boxes (Fig. 1A), one for each hand; the left/right order-
ing of the slot machines was counterbalanced across subjects but kept
constant across the task for each individual. Subjects had a maximum of
1.5 s to enter a choice; if no choice was entered during the 1.5 s window,
the message “Please respond faster!” was displayed for 1 s, which was then
followed by a 1–5 s delay before another trial started. In general, subjects
responded well before the timeout, with a mean reaction time of 523 � 20
ms (mean � SEM). On valid trials, the chosen slot machine was high-
lighted and, 3 s later, the outcomes for both chosen and unchosen slot
machines were displayed as a picture of a $1 coin or a circle marked $0
overlaid on each machine (Fig. 1A). The outcomes stayed on the screen
for 2 s, after which the screen was cleared. The trial sequence ended 6.5 s
after trial onset, and a randomly jittered intertrial interval with a mean of
2 s was introduced before the beginning of the next trial.

The payoff for each slot machine (i � {L, R}, where L is left and R is right)
on each trial (t) was either $1 or $0 (Fig. 1A), with each payoff drawn inde-
pendently from a binomial distribution according to a machine-specific
probability, pi,t, that gradually changed over trials (Fig. 1B). At the beginning
of the task (t � 1), both probabilities were independently drawn from a
uniform distribution with boundaries of [0.25,0.75]. Following each trial,
the probabilities were each diffused either up or down by adding or subtract-
ing 0.05 (equiprobably and independently). The updated probabilities,

pi,t�1, were then reflected off the boundaries
[0.25,0.75] to maintain them within that range.

Subjects were instructed that they would be
paid only according to the accumulated out-
comes of the slot machines that they actually
chose, not the forgone choices. Subjects were
also told that the final points they earned
would be converted proportionally to dollars
but not told the actual scaling factor (which
was 0.25).

Behavioral analysis. We first used a logistic
regression analysis to estimate how a subject’s
choice on trial t (dependent variable, for all
t � 2) was influenced by the chosen and un-
chosen rewards (Rc and Ru, respectively) on the
previous trial. We specified three independent
variables based on the events on the preceding
trial: reward on the chosen slot machine
(coded as 0 for no reward, or �1 or �1 for
reward following a left or right choice, respec-
tively), reward on the unchosen slot machine
(coded similarly), and the choice on that trial
[a dummy variable coded as �1 or �1 for left
or right choices, respectively, so as to capture
any first-order autocorrelation in the choices
(Lau and Glimcher, 2005)]. We estimated re-
gression weights for each subject individually
using maximum likelihood, and report sum-
mary statistics for these quantities across sub-
jects (Table 1).

We also fit the parameters of two learning models (detailed below) to
each subject’s choices by maximizing the (log) likelihood of the choice
sequence:

�
t

log P�cs,t � ��, (1)

separately for each subject, s. Here, cs,t denotes the choice made by subject
s on trial t and � is the parameter set. We sought optimal parameters
using a nonlinear optimization algorithm (fmincon, Matlab optimiza-
tion toolbox), and 30 different starting search locations for each subject
so as to avoid local maxima. We report negative log likelihoods (smaller
values indicate better fit), both pure and penalized (Kass and Raftery,
1995) for model complexity using the Bayesian information criterion.
We also report a pseudo-r 2 statistic (Camerer and Ho, 1999; Daw et al.,
2006), defined as (r � l )/r, where l and r are, respectively, the negative log
likelihoods of the data under either fit model and under purely random
choices (Pc,t � 0.5 for all trials and subjects).

Reinforcement learning models: Q-learning model. A Q-learning model
(Watkins and Dayan, 1992; Sutton and Barto, 1998; Dayan and Abbott,
2001; Daw et al., 2006; Li et al., 2006) learns an expected value (Q value)
for each option based on experienced outcomes, and then chooses ac-
cordingly. We adapted a standard model to allow learning from uncho-
sen as well as chosen rewards; this simply updates each machine’s value
on each trial according to its own prediction error. We allowed the
updating of the unchosen option to be controlled by a distinct learn-
ing rate to capture any differences in attention to the two outcomes.
Specifically, at each trial, both values were updated according to the
feedback received:

Qc,t � 1 � Qc,t � ��Qc,t

Qu,t � 1 � Qu,t � ���Qu,t,
(2)

where � is a free learning rate parameter,



We further assumed the probability of choosing either machine (i �
{L, R}) was softmax in its Q value:

Pi,t �
exp��Qi,t��
j

exp��Qj,t�
, (4)

with free exploration parameter � and initial Q values (QL,0 and QR,0)
(Table 1).

Policy-gradient model. A second approach to reinforcement learning
maintains policy parameters specifying a preference over options, and
updates this preference with feedback to achieve stochastic gradient as-
cent on the expected reward (Dayan and Abbott, 2001; Dayan and Daw,
2008). We again represent the selection policy as softmax; here the
chance of choosing machine L is

PL,t �
1

1 � exp(�wt)
, (5)

with the policy parameter w. Here,

PR,t � 1 � PL,t �
1

1 � exp�wt�
. (6)

If �rR� and �rL� are the average expected reward on either slot machine,
then the expected reward given any particular policy is as follows:

	r
w � PL	rL
 � PR	rR
, (7)

and its gradient with respect to the policy parameter,

		r
w

	w
� PLPR�	rL
 � 	rR
�, (8)

is proportional to the difference between the two reward rates. On each
trial, then, the gradient can thus be sampled stochastically as the differ-
ence between obtained and forgone rewards; note that this does not
require separately estimating the average values themselves. This algo-
rithm instead works directly with the policy w.

To write the gradient rule in a way that relates more directly to the
standard case when only the chosen reward is received, we formulate it in
terms of the chosen and unchosen rewards (rather than left and right), so
that

wt � 1 � �
wt � �PRPL�w,t; cs,t � L

wt � �PRPL�w,t; cs,t � R (9)

with error term

�w,t � Rc � �Ru, (10)

stepsize parameter �, decay parameter (to allow learning in the case of
nonstationarity, as in the task here) 
, and initial w (w0). The final free
parameter, �, again allows for the gradient to skew (e.g., due to dif-
ferential attention) toward the chosen or unchosen reward (Rc and Ru,
respectively).

Imaging acquisition. Functional images [T2*-weighted echo-planar
images with blood oxygenation level-dependent (BOLD) contrast] were
collected using a 3T Siemens Allegra head-only scanner and a Nova
Medical NM-011 head coil. To optimize functional sensitivity in the
orbitofrontal cortex and temporal lobes, we used a tilted acquisition
oriented at 30° above the anterior–posterior commissure line (Deich-

mann et al., 2003). This yielded 33 oblique-axial slices with 3 mm inter-
slice thickness, 3 
 3 mm in-plane resolution, with coverage from the
base of the orbitofrontal cortex and medial temporal lobes to the superior
border of the dorsal anterior cingulate cortex. Repetition time was 2 s.
Subjects’ heads were restrained with plastic pads to minimize head move-
ment during the experiment. A T1-weighted structural image (MPRAGE
sequence, 1 
 1 
 1 mm) was acquired after the functional run for each
subject to allow localization of functional activity. High-pass filtering
with a cutoff period of 128 s was also applied to the data.

Functional imaging analysis. Imaging data were preprocessed and ana-
lyzed using SPM5 (Wellcome Department of Imaging Neuroscience, Insti-
tute of Neurology, London, U.K.) and xjView (http://www.alivelearn.net/
xjview/), except for multiple-comparisons correction on final results, which
was done using SPM8. Motion effects were corrected by aligning images in
each run to the first volume using a six-parameter rigid body transformation.
(To account for additional residual effects of movement, the six scan-to-scan
motion parameters produced during realignment were also included as nui-
sance regressors in the functional analysis.) Mean functional images were
then coregistered to the structural image and normalized into MNI template
space using a 12-parameter affine transformation (SPM5, segment and nor-
malize, estimated from the structural). Normalized functional images were
resampled into 2 
 2 
 2 voxel resolution. A Gaussian kernel with a full
width at half maximum of 6 mm was applied for spatial smoothing.

For statistical analysis, we constructed three impulse events for each
trial at the times of slot machine presentation, choice entry, and outcome
presentation. The first two events were included to control the overall
variance; we focused on the outcome event here due to the fact that the
key prediction error signal is associated with the outcome. In three sep-
arate general linear models (GLMs), we modulated the outcome events
with different parametric regressors. First, in an initial attempt to seek
activity correlated with teaching signals for either policy gradient or pre-
diction errors associated with chosen and unchosen choices, we con-
structed a policy gradient regressor as Rc � �Ru, the difference between
the obtained and forgone reward, and also prediction error regressors for



threshold, but retaining only those clusters that pass the p � 0.05
cluster-size correction.

Finally, for the regions of interest (ROI) regression analysis, we first
identified two ROIs in striatum using the conjunction (Nichols et al.,
2005) of Rc and �Ru (thresholded at p � 0.001, uncorrected). We used
the average activity from each of these regions for the subsequent regres-
sion between the neural effect of Ru (the per-subject regression weight for
that variable) and the behavioral effect (the per-subject estimate of �
from the best fitting policy gradient model). Note that this approach
largely skirts the problem of multiple compar-
isons in intersubject regression analyses, since
the initial analysis to identify the ROI (the ex-
istence of a conjunction effect in the mean
across subjects) does not bias the subsequent
test for the between-subject pattern of varia-
tion. Significance levels need thus be corrected
only for two comparisons (two ROIs, left and
right) rather than for the whole-brain multiple
comparisons used to select the regions.

All results reported herein were qualitatively
the same when Q values were computed using a
common set of parameters across subjects,
taken as the average over all subjects of those
from the individual fits. Results were also in-
variant to changes in the ordering of the entry
of regressors in the design matrix (which, due
to serial orthogonalization of parametric re-
gressors in SPM, might hypothetically have im-
pacted their relative significance).

Results
Forgone reward and action selection
First, we assessed subjects’ behavioral sen-
sitivity to the experienced and forgone re-
wards by using logistic regression to
predict each subject’s choices as a func-
tion of the feedback she received on the
previous trial (Table 1). Across subjects,
both experienced (t(19) � 2.27, p � 0.02)
and forgone (t(19) � 3.94, p � 0.001) re-
wards significantly predicted the subject’s
next choice, with no significant difference
in the strength between the two influences
(paired samples, t(19) � 0.84, p � 0.4).
This result is consistent with the previous
literature on counterfactual effects, indi-
cating that humans’ choices are affected
not only by “what was” but also by “what might have been”
(Camille et al., 2004; Coricelli et al., 2005; Lohrenz et al., 2007).

We used two RL models to examine more detailed hypotheses
about how experience drove choices via learning (Sutton and
Barto, 1998; Dayan and Abbott, 2001; Bhatnagar et al., 2008). A
standard value-based model, Q-learning (Watkins and Dayan,
1992), separately tracks the expected value for each option and
compares these predicted values at choice times to derive a policy
for action selection. However, a policy-based model, the direct
actor, learns a policy representing the probability of choosing
either action, with an update that is determined by stochastic
gradient ascent on the overall expected reward (Dayan and Ab-
bott, 2001; Bhatnagar et al., 2008). Both models were straightfor-
wardly adapted to incorporate forgone rewards, and both
included an additional free parameter,�, to allow for a possible
difference in weighting (e.g., attention to) experienced rewards
and forgone rewards (see Materials and Methods) (Table 1). We
estimated free parameters and compared the models’ fits by maxi-

mizing the likelihood of each subject’s choices (Table 1). The policy-
based model generally performed better than the value-based model.
Individually, the policy-based model outperformed the Q-learning
model for 19 of 20 subjects (Table 2) according to the Bayesian
information criterion.

Neural correlates of Q-learning and policy gradient
Choice behavior was thus most consistent with a policy-based
strategy. However, because the behavioral predictions of the two
learning strategies are qualitatively similar to one another, we
next tested for neural signatures of teaching signals, about which
the two hypotheses make quite qualitatively distinct predictions.
Specifically, learning the value of each option separately requires
two independent prediction error signals, measuring the differ-
ence between the rewards received (Rc and Ru) and expected (Qc

and Qu) for both chosen and unchosen options (Rc � Qc and
Ru � Qu) (see Materials and Methods, above) (Camerer and Ho,
1999). In contrast, due to the symmetry of the task, updating

Figure 2. A, Neural correlates of Rc ��Ru. B, C, Overlapping viewof the neural correlates of prediction errors of chosen choices
(B, �chosen and ��chosen) and forgone choices (C, �unchosen and ��unchosen). p � 0.05.

Table 2. Qualities of behavioral fits of both models

Direct actor Q-learning

�LL 107.6 114.3
Pseudo-R 2 0.3534 0.3131
Number of parameters 4 5
BIC 118.6 128.0

Q-learning and policy-gradient models were fit to 20 subjects individually. Average quantities are reported. �LL,
Negative log likelihood; BIC, Bayesian information criterion.
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action preferences requires a unitary signal (formally, the gradi-
ent of the expected reward with respect to the policy) propor-
tional to the difference between the obtained and forgone
rewards, Rc � �Ru.

As a first step, we verified whether these three candidate error
signals correlated with BOLD activity in each trial at the time
when outcomes were revealed and learning was expected to take
place for both Q-learning and policy gradient models. These
three signals were extracted from each model using the parame-
ters that best fit the behavior. We focused on ventral striatum,
where many previous studies using fMRI have shown error-
related neural activity (Berns et al., 2001; McClure et al., 2003;
O’Doherty et al., 2003, 2004; Delgado et al., 2005; Daw and Doya,
2006). Accordingly, both the prediction error for the chosen ac-
tion’s value in the value-based model, Rc � Qc, and that for the
policy in the policy-based model, Rc � �Ru, correlated positively
with BOLD activities in the ventral striatum ( p � 0.05; unless
otherwise noted, all statistics concerning fMRI activations are
corrected at the cluster level for false discovery rate due to whole-
brain multiple comparisons) (Fig. 2A,B); the prediction error for
the unchosen option, Ru � Qu, correlated negatively with activity
in a similar region ( p � 0.05) (Fig. 2C).

The finding that error signals from both models were corre-
lated with BOLD activity in ventral striatum presumably reflects
the fact that the candidate error signals are themselves mutually
correlated, necessitating finer investigation to separate them. For
instance, the chosen value error (Rc � Qc) and policy error (



quantity also predicts effects of both Qs. The lack of significant
value prediction-related activity in our study seems to contrast
with many other studies in which striatal BOLD activity was de-
monstrably modulated by value expectation, as for prediction
errors (Berns et al., 2001; O’Doherty et al., 2003; Tanaka et al.,
2004; Hare et al., 2008). This apparent difference may be due to
the design of the current task, which differs from many others in
that, because of its symmetric form and the inclusion of counter-
factual feedback, the teaching signal for the policy contains no
reward expectation term.

Similarly, and strikingly, throughout the rest of the brain,
activity correlated with Rc and Ru was observed in almost the
same set of neural pathways (Fig. 3B), but with opposite direc-
tions of effect. Evidence for spatially nonoverlapping effects was
found (Rc � �Ru, p � 0.05) only in posterior portions of the
brain (occipital visual cortex and fusiform areas). Over the whole
brain, no activity was found to correlate positively or negatively
with Qc or Qu, even at a lower threshold ( p � 0.01 uncorrected).

Correlation of behavioral and neural sensitivities to
forgone reward
Finally, we compared neural and behavioral variation across sub-
jects to investigate whether forgone outcome signaling in ventral
striatum was related to choice behavior. In particular, we tested
whether, across subjects, there was covariation between estimates
of the weight (e.g., attention) given to the forgone outcome as
assessed from choice behavior (the parameter � from the policy-
gradient model) and from neural error-related activity in stria-
tum (the effect size for the forgone reward). We first identified
areas of error signaling in left and right ventral striatum (using
the conjunction of Rc and �Ru effects) (Fig. 4A), then tested
within each cluster whether the contribution of Ru to this signal
covaried across subjects with the weight to forgone rewards esti-
mated from choice behavior. The predicted correlation between
the behavioral and neural effects of the forgone reward was sig-
nificant in left striatum ( p � 0.018; Bonferroni corrected for two
comparisons, left and right striatum) (Fig. 4A, red circle, B), and
trended in the same direction, though not significantly so, in
right striatum ( p � 0.45 corrected) (data not shown), suggesting
that both neural and behavioral analyses consistently tapped a
common learning process.

Discussion
A longstanding question in psychology— dating back to early
debates surrounding behaviorism (Thorndike, 1898; Tolman,

1949; Dickinson and Balleine, 2002)—is
the representational question: what ex-
actly is learned from reinforcement?
Error-driven RL theories are surprisingly
ambivalent on this issue. Value-based (Q-
learning) models propose that the differ-
ence between obtained and predicted
rewards is used to update expected action
values, and choice policies are subse-
quently derived by comparing these inter-
mediate quantities (Barraclough et al.,
2004; Daw et al., 2005; O’Reilly and Frank,
2006; Hare et al., 2008; Boorman et al.,
2009). Policy-based approaches instead
update a choice policy directly, though of-
ten alongside a value representation.
What makes these two approaches diffi-
cult to differentiate is that in most circum-
stances, the policy update signal, derived

from the gradient of the expected rewards with respect to the
policy, also takes the form of a difference between obtained and
expected rewards. Indeed, the signals are so similar that the
prominent actor/critic algorithm actually uses the same error
signal to update both state values and policies.

Here, we studied a task in which this is not the case, allowing
us to distinguish a teaching signal for direct policy preferences
from signals for learning value predictions. In particular, forgone
reward takes the place of the expected reward in a policy teaching
signal, but not in an action value teaching signal. We found evi-
dence that net outcome-related BOLD activity in the striatum is
appropriate to learning policies, but no similar evidence for sig-
nals appropriate for updating separate action values. That said,
the latter (negative) conclusion relies on a stronger test for PE
signaling than is often used in the literature. In many studies,
including ours (Fig. 2), striatal BOLD activity correlated with a
PE signal for Q values. We decomposed the activity to show that,
in our task, this correlation was likely due only to outcome- and
not prediction-related activity, supporting the policy model. Al-
though most previous authors did not report this particular analysis,
many showed other evidence that the striatal BOLD response was
modulated by predictions as well as outcomes [e.g., by including
outcome as an effect of no interest or contrasts between expected
and unexpected outcomes (Berns et al., 2001; McClure et al.,
2003; Li et al., 2006, 2011; Hare et al., 2008)]. Interestingly, Beh-
rens and colleagues (2007, 2008) separately tested both effects in
the same manner we did and also found no effect of predictions.
This may be because in their task, like ours, forgone rewards were
known, so that expectancies would also disappear from the policy
update signal.

A number of recent studies suggest that error-related BOLD
activity in striatum may reflect, at least in part, the dopaminergic
input from midbrain (Pessiglione et al., 2006; Knutson and
Gibbs, 2007; Schonberg et al., 2010). Of course, since the fMRI
BOLD signal is a generic metabolic signal not specific to a single
underlying neural cause, unit recordings will be required to de-
termine whether our results generalize to the prediction error
responses of midbrain dopamine neurons.

Our results do, however, provide positive evidence in the hu-
man brain for a teaching signal specifically appropriate for up-
dating action policies. Unlike error signals previously reported in
other tasks, which did not probe the distinction since value and
policy errors coincided (Daw et al., 2006; Hampton et al., 2006;
Morris et al., 2006; Schonberg et al., 2007, 2010), this signal can-

Figure 4. A, Error signaling ROI in left ventral striatum, identified from the conjunction of Rc and �Ru across subjects [p �
0.001, uncorrected (unc)]. B, In left striatum (A, circles), the neural effect size for �Ru was positively correlated, across subjects,
with the weight for the unchosen reward, �, estimated from choice behavior ( p � 0.018, Bonferroni corrected; r � 0.57).
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not alternatively be interpreted as a prediction error for values.
Perhaps the best previous evidence for a policy-specific update
signal was an influential report of spatially distinct correlates in
striatum of a prediction error during a free-choice compared
with an instructed-choice condition (O’Doherty et al., 2004; also
see Tricomi et al., 2004). Although in that task also, modeled
value and policy teaching signals were substantially the same and
activity in the dorsal striatum was specific for the free-choice
condition and interpreted as a policy teaching signal on that basis.
Interestingly, standard actor/critic models do not obviously pre-
dict that policy teaching signals will be specific to free-choice
conditions; instead, they assert that both actor (policy learning)
and critic (value learning) modules just use a common error
signal (Barto, 1995). Here, we skirt this interpretational difficulty
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